

SOUTHERN AFRICAN CENTRE FOR INFECTIOUS DISEASE SURVEILLANCE

Genome profiling of multidrug resistance tuberculosis among patients in Tanzania

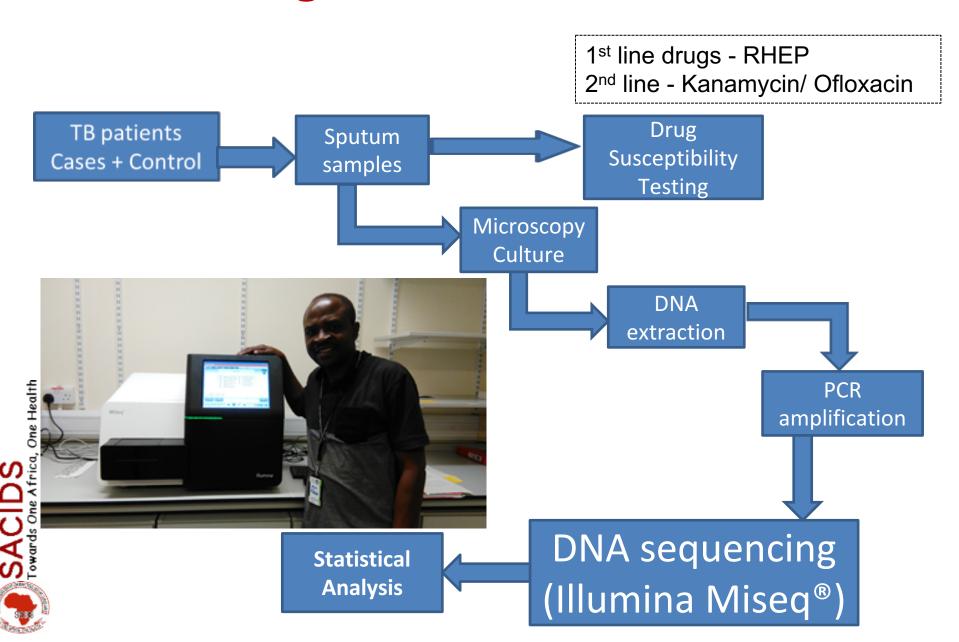
Bugwesa Z Katale, Nsiande A Lemma, Susana G Campino, Erasto V Mbugi, Mtebe Majigo, Peter M Mbelele, Jody E Phelan, Julius D Keyyu, Mark M Rweyemamu, Hazel M Dockrell, Taane G Clark, Mecky I Matee

Background

- Multidrug resistance TB (MDR-TB) defined as resistance to at least Rifampin (RIF) and Isoniazid (INH), is a threat to global eradication of TB
- Drug resistant TB is due to accumulation of mutations in genes
 - INH katG, inhA, ahpC, kasA; RIF rpoB, Ethambutol-embB
 - Pyrazinamide (PZA) pncA; Streptomycin (STR) rpsL and rrs
- Prevalence of MDR
 - Globally, 4.1% of new TB cases, 19% treated cases (WHO, 2017)
 - Tanzania, 60,575 new cases (1.1%); 2,576 treated cases (3.9%)(NTLP, 2015)
 - Most studies on resistance to TB drugs have been done using DST, few by GeneXpert MTB/RIF (Cepheid) that do not allow the detection of new mutations

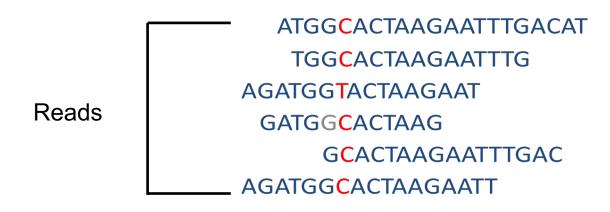
Background

- Whole genome sequencing (WGS) detect new mutations (SNPs) in important proteins, regulatory enzymes and promoter genes &
- The availability of Whole genome sequencing (WGS) has improved the understanding anti-TB drug resistance
- Hypothesis
 - The evolution of drug resistance TB is primarily driven by drug therapy or de novo micro-evolution of new drug resistance strains
- Research Question
 - What are the genomic diversity and drivers of evolution of drug resistance
 TB strains that have evolved special mechanisms that facilitate drug resistance acquisition?



Materials & Methods

- Study area: Kibong'oto Infectious Diseases Hospital
- Study design: Unmatched case control study
 - 31 subjects MDR-TB
 - 10 subjects non MDR-TB
- Ethical consideration Research and Publications Committee of MUHAS, Tanzania



Diagnostic Procedures

Data Analysis

1. Alignment of reads to a reference genome

Reference genome

AGATGGCACTAAGAATTTGACAT

2. Construction of phylogeny

Using all SNPs, a maximum likelihood phylogeny was constructed using RaXML

Results & Discussion

Drug	Gene	SNP Mutation (% in resistance isolates)	Drug	Targetgene	SNP Mutation ((% in resistance isolates)
Isoniazid	katG	S315T (77.4%), S315R (3.2%), W328L (3.2%), G316S (3.2%)	Ethambutol	embB	Q497R(23.3%),M306V(16.7%),G406S(10%),D1 024N(10%),M306T(6.7%),
	inhA	I21T (3.2%)			
	Rv1482c-fabG1	T8C (6.5%), C15T (3.2%)		embC	Y334H(10%), D354A(3.2%), M306I(3.2%) C16T(10%)
	oxyR'-ahpC	C52T (3.2%)			
Rifampin Streptomycin	rpoB rpsL rrs	S450L (41.9%), H445Y (9.7%), H445R (6.7%), Q432E (12.9%), H445L (3.2%), D435V (6.5%), H445D (3.2%), H445D (3.2%), K446Q (3.2%), S431T; L430P (3.3%), L452 P(3.2%), L464M (3.3%) K88R (16.1%), K88M (12.9%), K43R (3.2%) C905G (3.2%), C517T (3.2%)	Pyrazinamide	pncA	V128G (20%), D49G (3.2%), D63A (3.2%), A193AT (3.2%), P69L (6.5%), A46V (3.2%),
				Rv1482cfabG1	I21T (3.2%)
				InhA	
			Amikacin	rrs	C517T (3.2%)
			Flouroquinolones	gyrB	R446C (3.2%)

A range of mutations that drive resistance to anti-TB drugs, suggesting diversity in the drug resistance of *M. tuberculosis* isolates in Tanzania

Results & Discussion

- Resistances to INH and RIF and ETH were predominantly in the katG, rpoB and embB genes respectively, reflecting ongoing transmission of these strains in our local settings
- The S315T and S450L amino acid substitutions in the *katG* and *rpoB* genes, respectively, were the most prevalent mutations found in MDR-TB isolates, and concurs with other studies (Unissa et al. 2015: Silva et al. 2003; Höfling et al. 2005).
- More mutations in katG & rpoB gene, is a reliable biomarker or hot spot region for determining of MDR-TB in our local settings
- The detected mutations mediating resistance to first line drugs correlated with phenotypic DST results

Discussion & Conclusion

Majority of MDR TB isolates were from lineage 4 (LAM) 41.9% (13/31), which is one of the predominant lineage in Tanzania (Mbugi et al. 2015)

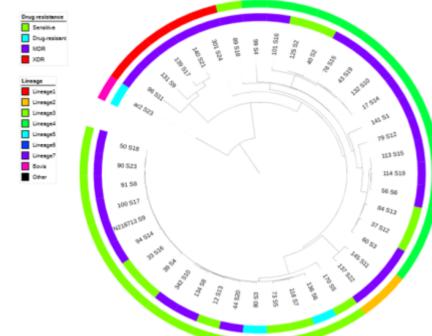


Fig: Phylogenetic tree showing the variations between the patterns of drug resistance (DR) and genotypic family of *M. tuberculosis* strains

- In conclusion, a diversity of mutations that could assist with developing rapid diagnostics for clinical patient management
- Inspite of challenges associated with WGS in resource limited countries, WGS is cost effective and provides actionable results with reference to infection control
- Ongoing: WGS of >isolates to increase sample size

Acknowledgements

Grant WT087546MA

